Modelo Atómico de Bohr






Niels Bohr propone los Espectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso. A partir de esto propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.

En 1913 publicó una explicación teórica para el espectro atómico del hidrógeno.
Basándose en las ideas previas de Max Plank, que en 1900 había elaborado una teoría sobre la discontinuidad de la energía, Bohr supuso que el átomo solo puede tener ciertos niveles de energía definidos.
Bohr establece así, que los electrones solo pueden girar en ciertas órbitas de radios determinados. Estas órbitas son estacionarias, en ellas el electrón no emite energía: la energía cinética del electrón equilibra exactamente la atracción electrostática entre las cargas opuestas de núcleo y electrón.
El electrón solo puede tomar así los valores de energía correspondientes a esas órbitas. Los saltos de los electrones desde niveles de mayor energía a otros de menor energía o viceversa suponen, respectivamente, una emisión o una absorción de energía electromagnética.

“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en orbitas bien definidas.”
• Cada orbita tiene una energía asociada. La más externa es la de mayor energía.
• Los electrones no radian energía (luz) mientras permanezcan en orbitas estables.
• Los electrones pueden saltar de una a otra orbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada orbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).
Propiedades del Átomo de Bohr.
Atendiendo a las características estructurales del átomo las propiedades de este varían. Así por ejemplo los átomos de que tienen el mismo número de electrones de valencia que poseen distintos números atómicos poseen características similares.
Los átomos están formados por un núcleo que posee una serie de partículas subatómicas. Alrededor del núcleo se hallan en diferentes órbitas los electrones.
Las partículas subatómicas de las que se compone el núcleo son los protones y los neutrones. Los átomos son eléctricamente neutros. Luego, si contienen electrones, cargados negativamente, deben contener también otras partículas con carga positiva que corresponden a la carga de aquellos. Estas partículas estables con signo positivo se las llamó protón. Su masa es igual a 1,6710-27 kg.
Con estas dos partículas, se intentó construir todos los átomos conocidos, pero no pudo ser así porque faltaban unas de las partículas elementales del núcleo que fue descubierto por J. Chadwick en 1932 y que se llamó neutrón. Esta partícula era de carga nula y su masa es ligerísimamente superior a la del protón (1,6748210-27kg.).
Sin negar el considerable avance que supuso la teoría atómica de Bohr, ésta solo podía aplicarse a átomos muy sencillos, y aunque dedujo el valor de algunas constantes, que prácticamente coincidían con los valores experimentales sencillos, el modelo no fue capaz de explicar los numerosos saltos electrónicos, responsables de las líneas que aparecen en los espectros de los átomos que poseen más de un electrón. Al modelo de Bohr se le fueron introduciendo mejoras, pero la idea de un átomo compuesto por orbitas alrededor de un núcleo central puede considerarse demasiado sencilla, no fue posible interpretar satisfactoriamente el espectro de otros átomos con más de uh electrón (átomos poli electrónicos) ni mucho menos la capacidad de los átomos para formar enlaces químicos.
El mayor éxito de Bohr fue dar la explicación al espectro de emisión del hidrogeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una orbita a otra,

siendo un pulso de energía radiada. Bohr no puede explicar la existencia de orbitas estables y para la condición de cuantización. Bohr encontró que el momento angular del electrón es h/2π por un método que no puede justificar.
El número de electrones de cada elemento en su estado natural es característico, puesto que depende de su número atómico. Estos electrones estarán distribuidos en diferentes niveles energéticos que pueden funcionar como estaciones de paso para aquellos que reciben suficiente energía para saltar de un nivel a otro. Al devolverse, la luz que, difractada, produce el espectro característico.

Sin embargo el modelo atómico de Bohr también tuvo que ser abandonado al no poder explicar los espectros de átomos más complejos. La idea de que los electrones se mueven alrededor del núcleo en órbitas definidas tuvo que ser desechada. Las nuevas ideas sobre el átomo están basadas en la mecánica cuántica, que el propio Bohr contribuyó a desarrollar.
A pesar de constituir un gran avance y de predecir hechos reales, el modelo nuclear de Rutherford presentaba dos graves inconvenientes:
A. Contradecía las leyes electromagnéticas de Maxwell, según las cuales, una partícula cargada, cuando posee aceleración, emite energía electromagnética.
B. Según el enunciado anterior los espectros atómicos debería ser continuos, ocurriendo que éstos son discontinuos, formados por líneas de una frecuencia determinada.